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1
SHAPE-BASED IMAGE SEGMENTATION

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims the benefit of U.S. provi-
sional application No. 61/813,710 filed on Apr. 19, 2013, the
entire contents of which are herein incorporated by reference.

TECHNICAL FIELD

The present disclosure generally relates to image segmen-
tation, and more particularly, to image segmentation based on
shapes.

BACKGROUND

The field of medical imaging has seen significant advances
since the time X-Rays were first used to determine anatomical
abnormalities. Medical imaging hardware has progressed in
the form of newer machines such as Medical Resonance
Imaging (MRI) scanners, Computed Axial Tomography
(CAT) scanners, etc. Because of large amount of image data
generated by such modern medical scanners, there has been
and remains a need for developing image processing tech-
niques that can automate some or all of the processes to
determine the presence of anatomical abnormalities in
scanned medical images.

Digital medical images are constructed using raw image
data obtained from a scanner, for example, a CAT scanner,
MRI, etc. Digital medical images are typically either a two-
dimensional (“2-D”) image made of pixel elements or a three-
dimensional (“3-D”) image made of volume elements (‘“vox-
els”). Such 2-D or 3-D images are processed using medical
image recognition techniques to determine the presence of
anatomical structures such as cysts, tumors, polyps, etc.
Given the amount of image data generated by any given
image scan, it is preferable that an automatic technique
should point out anatomical features in the selected regions of
an image to a doctor for further diagnosis of any disease or
condition.

Automatic image processing and recognition of structures
within a medical image is generally referred to as Computer-
Aided Detection (CAD). A CAD system can process medical
images and identify anatomical structures including possible
abnormalities for further review. Such possible abnormalities
are often called candidates and are considered to be generated
by the CAD system based upon the medical images.

One process often involved in CAD systems is the segmen-
tation of medical images. Image segmentation is the process
of partitioning an image into multiple segments. Image seg-
mentation is typically used to locate objects of interest (e.g.,
abnormalities such as lesions) as candidates for further
review.

One type of image segmentation technology is region-
based, which is also classified as a pixel-based image seg-
mentation since it involves the selection of initial seed points.
Region growing is the simplest region-based segmentation
that groups pixels or sub-regions into larger regions based on
a pre-defined criteria. The pixel aggregation starts with an
initial set of “seed” points, and regions are then grown from
these seed points to adjacent points that have similar proper-
ties (e.g., gray level, texture, color, shape, etc.).

Pixel-based segmentation (e.g., region growing) is fast,
conceptually simple, and better than, for example, edge-
based techniques in noisy images where edges are difficult to
detect. However, pixel-based segmentation methods do not
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have global shape information when processing each pixel
locally. Therefore, at each iteration, the segmentation process
only makes a decision whether the pixel in question should be
included in the segmentation mask and processes that pixel’s
neighboring pixels recursively. The segmentation results are
prone to “leaks” or “bleed-through™ artifacts in which the
segmentation mask floods outside the object of interest and
the boundary between objects are blurry or not clearly distin-
guishable. This can cause the segmentation method to, for
example, erroneously categorize healthy tissue as part of an
abnormality (e.g., lesion).

Therefore, there is a need for improved systems and meth-
ods for pixel-based segmentation algorithms to prevent seg-
mentation leakage.

SUMMARY

Described herein are systems and methods for image seg-
mentation. In accordance with one aspect, a current segmen-
tation mask associated with an object of interest is iteratively
refined. Any image element associated with a previously gen-
erated fence is excluded from the current segmentation mask.
The fence may be generated around one or more image ele-
ments that violate a shape constraint.

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the following detailed description. It is not intended to iden-
tify features or essential features of the claimed subject mat-
ter, nor is it intended that it be used to limit the scope of the
claimed subject matter. Furthermore, the claimed subject
matter is not limited to implementations that solve any or all
disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the present disclosure
and many of the attendant aspects thereof will be readily
obtained as the same becomes better understood by reference
to the following detailed description when considered in con-
nection with the accompanying drawings.

FIG.1isablock diagram illustrating an exemplary system;

FIG. 2 shows an exemplary method of segmentation;

FIGS. 3a-b illustrate the generation of a shape descriptor;

FIG. 4 illustrates an exemplary segmentation of a vertebral
artery with and without fences; and

FIG. 5 illustrates an exemplary segmentation of a large
vessel (descending aorta) with and without fences.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth such as examples of specific components, devices,
methods, etc., in order to provide a thorough understanding of
embodiments of the present invention. It will be apparent,
however, to one skilled in the art that these specific details
need not be employed to practice embodiments of the present
invention. In other instances, well-known materials or meth-
ods have not been described in detail in order to avoid unnec-
essarily obscuring embodiments of the present invention.
While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that
there is no intent to limit the invention to the particular forms
disclosed, but on the contrary, the invention is to cover all
modifications, equivalents, and alternatives falling within the
spirit and scope of the invention. Furthermore, for ease of
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understanding, certain method steps are delineated as sepa-
rate steps; however, these separately delineated steps should
not be construed as necessarily order dependent in their per-
formance.

The term “x-ray image” as used herein may mean a visible
x-ray image (e.g., displayed on a video screen) or a digital
representation of an x-ray image (e.g., a file corresponding to
the pixel output of an x-ray detector). The term “in-treatment
x-ray image” as used herein may refer to images captured at
any point in time during a treatment delivery phase of a
radiosurgery or radiotherapy procedure, which may include
times when the radiation source is either on or off. From time
to time, for convenience of description, CT imaging data may
be used herein as an exemplary imaging modality. It will be
appreciated, however, that data from any type of imaging
modality including but not limited to X-Ray radiographs,
MRI, CT, PET (positron emission tomography), PET-CT,
SPECT, SPECT-CT, MR-PET, 3D ultrasound images or the
like may also be used in various embodiments of the inven-
tion.

Unless stated otherwise as apparent from the following
discussion, it will be appreciated that terms such as “segment-
ing,” “generating,” “registering,” “determining,” “aligning,”
“positioning,” “processing,” “computing,” “selecting,” “esti-
mating,” “detecting,” “tracking” or the like may refer to the
actions and processes of a computer system, or similar elec-
tronic computing device, that manipulates and transforms
data represented as physical (e.g., electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.
Embodiments of the methods described herein may be imple-
mented using computer software. If written in a programming
language conforming to a recognized standard, sequences of
instructions designed to implement the methods can be com-
piled for execution on a variety of hardware platforms and for
interface to a variety of operating systems. In addition,
embodiments of the present invention are not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement embodiments of the present invention.

As used herein, the term “image” refers to multi-dimen-
sional data composed of discrete image elements (e.g., pixels
for 2-D images and voxels for 3-D images). The image may
be, for example, a medical image of a subject collected by
computer tomography, magnetic resonance imaging, ultra-
sound, or any other medical imaging system known to one of
skill in the art. The image may also be provided from non-
medical contexts, such as, for example, remote sensing sys-
tems, electron microscopy, etc. Although an image can be
thought of as a function from R> to R, or a mapping to R?, the
methods of the inventions are not limited to such images, and
can be applied to images of any dimension, e.g., a 2-D picture
ora3-D volume. Fora 2- or 3-dimensional image, the domain
of the image is typically a 2- or 3-dimensional rectangular
array, wherein each pixel or voxel can be addressed with
reference to a set of 2 or 3 mutually orthogonal axes. The
terms “digital” and “digitized” as used herein will refer to
images or volumes, as appropriate, in a digital or digitized
format acquired via a digital acquisition system or via con-
version from an analog image.

The term “image element” is used to refer to a smallest
addressable element in image data, such as a pixel or voxel.
The terms “pixels” for picture elements, conventionally used
with respect to 2-D imaging and image display, and “voxels”
for volume image elements, often used with respect to 3-D
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imaging, can be used interchangeably. It should be noted that
the 3-D volume image is itself synthesized from image data
obtained as pixels on a 2-D sensor array and displays as a 2-D
image from some angle of view. Thus, 2-D image processing
and image analysis techniques can be applied to the 3-D
volume image data. In the description that follows, tech-
niques described as operating upon pixels may alternately be
described as operating upon the 3-D voxel data that is stored
and represented in the form of 2-D pixel data for display. In
the same way, techniques that operate upon voxel data can
also be described as operating upon pixels. In the following
description, the variable x is used to indicate a subject image
element at a particular spatial location or, alternately consid-
ered, a subject pixel. The terms “subject pixel” or “subject
voxel” are used to indicate a particular image element as it is
operated upon using techniques described herein.

The present framework relates to automated or semi-auto-
mated analysis of digital or digitized images. More particu-
larly, the present framework employs shape priors to help
prevent or minimize segmentation leakage. A “shape prior”
generally refers to knowledge of a partial or entire predicted
shape that is used to constrain the image segmentation
method, such as the probability distribution of a measure-
ment, e.g., the area and perimeter of the shape. In accordance
with one implementation, one or more fences may be set up in
the vicinity of image elements (e.g., pixels or voxels) at the
growing segmentation boundary (or frontier) that violate
shape constraints. Such fences serve to exclude neighboring
pixels (or voxels) from the region growing process, so as to
prevent possible segmentation leakage. The present frame-
work is advantageously able to accommodate segmentation
of complex shapes, including multi-component shapes such
as bone tumors. These and other exemplary advantages and
features will be described in more detail in the following
description.

It is understood that while a particular application directed
to region growing-based segmentation may be shown, the
technology is not limited to the specific implementations
illustrated. The present technology has application to, for
example, other types of segmentation methods, such as those
based on using a partial differential equation (PDE) and solv-
ing the PDE by a numerical scheme. PDE-based segmenta-
tion typically employs curve evolution or propagation tech-
niques to delineate the segmentation mask. Examples of
PDE-based segmentation include active contour model (or
snakes) and level set methods. Other methods are also useful.

FIG. 1 is a block diagram illustrating an exemplary system
100. The system 100 includes a computer system 101 for
implementing the framework as described herein. Computer
system 101 may be a desktop personal computer, a portable
laptop computer, another portable device, a mini-computer, a
mainframe computer, a server, a storage system, a dedicated
digital appliance, a communication device, or another device
having a storage sub-system configured to store a collection
of digital data items. In some implementations, computer
system 101 operates as a standalone device. In other imple-
mentations, computer system 101 may be connected (e.g.,
using a network) to other machines, such as imaging device
102 and workstation 103. In a networked deployment, com-
puter system 101 may operate in the capacity of a server (e.g.,
thin-client server, such as Syngo®. via by Siemens Health-
care), a client user machine in server-client user network
environment, or as a peer machine in a peer-to-peer (or dis-
tributed) network environment.

In one implementation, computer system 101 comprises a
processor or central processing unit (CPU) 104 coupled to
one or more non-transitory computer-readable media 106
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(e.g., computer storage or memory), display device 108 (e.g.,
monitor) and various input devices 110 (e.g., mouse or key-
board) via an input-output interface 121. Computer system
101 may further include support circuits such as a cache, a
power supply, clock circuits and a communications bus. Vari-
ous other peripheral devices, such as additional data storage
devices and printing devices, may also be connected to the
computer system 101.

The present technology may be implemented in various
forms of hardware, software, firmware, special purpose pro-
cessors, or a combination thereof, either as part of the micro-
instruction code or as part of an application program or soft-
ware product, or a combination thereof, which is executed via
the operating system. In one implementation, the techniques
described herein are implemented as computer-readable pro-
gram code tangibly embodied in non-transitory computer-
readable media 106. In particular, the present techniques may
be implemented by a segmentation unit 107. Non-transitory
computer-readable media 106 may include random access
memory (RAM), read-only memory (ROM), magnetic floppy
disk, flash memory, and other types of memories, or a com-
bination thereof. The computer-readable program code is
executed by CPU 104 to process images (e.g., MR or CT
images) acquired by, for example, imaging device 102 (e.g.,
MR or CT scanner). As such, the computer system 101 is a
general-purpose computer system that becomes a specific
purpose computer system when executing the computer-
readable program code. The computer-readable program
code is not intended to be limited to any particular program-
ming language and implementation thereof. It will be appre-
ciated that a variety of programming languages and coding
thereof may be used to implement the teachings of the dis-
closure contained herein.

The same or different computer-readable media 106 may
be used for storing image datasets, segmentation instructions,
knowledge base, individual patient data, database of previ-
ously treated patients (e.g., training data), and so forth. Such
data may also be stored in external storage or other memories.
The external storage may be implemented using a database
management system (DBMS) managed by the CPU 104 and
residing on a memory, such as a hard disk, RAM, or remov-
able media. The external storage may be implemented on one
or more additional computer systems. For example, the exter-
nal storage may include a data warchouse system residing on
a separate computer system, a picture archiving and commu-
nication system (PACS), or any other now known or later
developed hospital, medical institution, medical office, test-
ing facility, pharmacy or other medical patient record storage
system.

The imaging device 102 may be a radiology scanner, such
as a magnetic resonance (MR) scanner or a CT scanner, for
acquiring image data. The workstation 103 may include a
computer and appropriate peripherals, such as a keyboard and
display device, and can be operated in conjunction with the
entire system 100. For example, the workstation 103 may
communicate with the imaging device 102 so that the image
data collected by the imaging device 102 can be rendered at
the workstation 103 and viewed on a display device.

The workstation 103 may communicate directly with the
computer system 101 to display processed image data and/or
output image processing results (e.g., labeled images). The
workstation 103 may include a graphical user interface to
receive user input via an input device (e.g., keyboard, mouse,
touch screen voice or video recognition interface, etc.) to
manipulate visualization and/or processing of the image data.
For example, the user may view the segmented image data,
and specify one or more view adjustments or preferences
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(e.g., zooming, panning, rotating, changing contrast, chang-
ing color, changing view angle, changing view depth, chang-
ing rendering or reconstruction technique, etc.), navigate to a
particular region of interest by specitying a “goto” location,
and so forth.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures can be implemented in software,
the actual connections between the systems components (or
the process steps) may differ depending upon the manner in
which the present invention is programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
skill in the related art will be able to contemplate these and
similar implementations or configurations of the present
invention.

FIG. 2 shows an exemplary method 200 of segmentation
performed by a computer system. It should be understood that
the steps of the method 200 may be performed in the order
shown or a different order. Additional, different, or fewer
steps may be provided. Further, the method 200 may be
implemented with the system 101 of FIG. 1, a different sys-
tem, or a combination thereof.

At 202, the segmentation unit 107 receives image data. The
image data may include current patient image data of an
object of interest (e.g., liver, lung, vertebra, colon, heart, etc.)
that is currently being segmented. The image data may be
extracted from a volumetric image dataset. The volumetric
image dataset may be stored in Digital Imaging and Commu-
nications in Medicine (DICOM) format. Any other digital file
format may also be used. The image data may be received
from, for example, a storage device, a database system or an
archiving system, such as a picture archiving and communi-
cation (PACS) system. In addition, the image data may be
acquired by an imaging device using modalities such as mag-
netic resonance (MR) imaging, computed tomography (CT),
helical CT, x-ray, positron emission tomography (PET), PET-
CT, fluoroscopy, ultrasound, single-photon emission com-
puted tomography (SPECT), SPECT-CT, MR-PET, etc. Fur-
ther, the image data may also be derived from originally
acquired image data, such as Maximum Intensity Projection
(MaxIP) images, Minimum Intensity Projection (MinIP)
images, filtered images, and so forth. Even further, the image
data may be two-dimensional, three-dimensional, or four-
dimensional.

At 204, the segmentation unit 107 defines an initial region
or curve of a current segmentation mask associated with the
object of interest in the image data. The initial region or curve
can be placed on the image data automatically or through user
interaction. For instance, the segmentation unit 107 may auto-
matically place the initial region or curve on the image at a
portion of the image having the brightest intensity, or by
detecting some other feature. The segmentation unit 107 may
also accept auser selection of one or more points on the image
as initial seed points. The user may make the selection via a
user interface at, for example, workstation 103 by clicking or
tapping on the image with an input device (e.g., mouse, touch-
pad, touchscreen, etc.). The segmentation unit 107 may then
form the initial region or curve around the seed points
selected by the user.

At 206, the segmentation unit 107 refines the current seg-
mentation mask associated with the object of interest being
segmented. The current segmentation mask is set to the initial
region or curve at the first iteration of segmentation, and
iteratively refined while excluding any image element asso-
ciated with a fence. “Fences” will be described in more detail
with reference to step 210. The segmentation mask includes
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image elements (e.g., pixels or voxels) that are similar with
respect to some characteristic or property, such as color,
intensity or texture.

In some implementations, region growing is performed to
refine the current segmentation mask. Region growing may
be performed by adding neighboring image elements to the
current segmentation mask that have features (e.g., intensity
values, gray level texture, color, etc.) that are similar to the
image elements in the current segmentation mask. The region
growing excludes any image elements that are associated
with any fence generated by step 210 in a previous iteration.
For instance, if a subject voxel at the boundary of the current
segmentation mask is not associated with any previously
generated fences and the difference between the subject vox-
el’s intensity value and the mean intensity value ofthe current
region is less than a predetermined threshold value, the sub-
jectvoxel is incorporated into the current segmentation mask.

In some implementations, curve evolution (or propagation)
is performed to refine the current segmentation mask. Curve
evolution may be performed by refining an initial curve (or
snake) towards the lowest potential of a cost function, subject
to shape constraints imposed by the fences. The curve evolu-
tion excludes any image elements that are associated with any
fence generated by step 210 in a previous iteration. For
instance, the cost function can be set high at the fence so that
the curve cannot go beyond the fence.

At 208, the segmentation unit 107 calculates a shape
descriptor for a subset of voxels in the current region. The
shape descriptor may be, for example, a Gauss Map (GM), a
Gaussian Linking Integrand (GLI), a shape context, or any
other measure that describes the shape of the current region.
The shape descriptor allows the segmentation unit 107 to
determine if a subject voxel violates shape constraints in step
210. The subset of voxels where the shape descriptor is cal-
culated may be limited to those located at the boundary of the
current region where the growth has currently stopped (i.e.
boundary voxels). The boundary voxels may be divided into
multiple subsets of voxels for which multiple shape descrip-
tors may be computed.

FIGS. 3a-b illustrate the generation of a shape descriptor
from a subset of boundary voxels. The point x represents a
subject boundary voxel of Object 1, while the curve C, rep-
resents a curvilinear segment of a boundary of Object 2.
Shape descriptors (e.g., GM, GLI, shape context, etc.) may be
computed from subject voxel x for the current region and the
shape prior for comparison. As discussed previously, a “shape
prior” generally refers to knowledge of a partial or entire
predicted shape that is used to constrain the image segmen-
tation method, such as the probability distribution of mea-
surements (e.g., area, perimeter, etc.). The shape prior can be
defined based upon prior knowledge of a shape of a specific
object class or a geometric property of an object. The shape
prior may be based on, for example, a geometric shape (e.g.,
tube, rectangle, square, ellipse, circle, etc.).

Each shape descriptor describes how Object 2 (C,) looks
like when viewed from each point x of Object 1. Object 1 and
Object 2 may be associated with the same object or different
objects. In some implementations, both Objects 1 and 2 are
associated with the same object of interest (e.g., liver) when
computing shape descriptors for a current region or a shape
prior. Alternatively, Objects 1 and 2 may be associated with
the object of interest and another object in the vicinity of the
object of interest. For example, assuming that the object of
interest is the liver, the shape descriptor of a shape prior may
be determined based on both the liver (as Object 1) and lung
(as Object 2) in prior patient image dataset (i.e. prior knowl-
edge). Similarly, the shape descriptor of a current region may
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be determined based on both the liver (as Object 1) and lung
(as Object 2) in current patient image data (i.e. patient data
that is currently being segmented). In other words, the shape
descriptor of each point of a segmented liver may be calcu-
lated using both the point of the liver and the surface of the
lung. If the lung looks very different from the shape prior
when viewed from the point x of the liver, then the point x may
be wrongly located, so the fences should be built around it.

A Gauss Map (GM) provides a mapping from each voxel
on the curve C, (302) to a corresponding point on a unit
sphere S? (304) centered at x. Referring to FIG. 3a, given a
curve C, (302) lying in R?, the Gauss map may be a continu-
ous map d: C,—>S? such that d(p) is a unit vector in the
direction of a line 306 connecting x to each point on C,.
Alternatively, as shown in FIG. 35, the Gauss map may be a
continuous map N: C,—>S? such that N(p) is a unit vector
orthogonal to C, at p, namely the normal vector to C, at p. It
should be appreciated that C, is not limited to a curve. It can
be, for example, a surface or volume.

A GLI may be computed from the Gauss map T of d(p).
The GLI describes the linking of two closed curves in three-
dimensional space. More particularly, the GLI encodes how
two curves wind around each other. Given two non-intersect-
ing differentiable curvilinear segments vy,, v,:C,—>R> along
the boundary of the current region of segmentation, the gen-
eralized GLI may be defined by

= e Xy @
g_47r||f||” Y1 Xayj)

wherein x is a vector product, ( )( ) is a dot product, and fis a
function of y, and y,. When f=y, -y, and n=3, the integral [fg
becomes the Gaussian Linking Integral, and is invariant
regardless of geometrical deformations of y, and v,. In some
instances, we may use f=y,+y, andn=1,2,3 . ... It should be
appreciated that y, and y, are not limited to curves. They can
be, for example, surfaces and volumes. The GLI may be
calculated for each pair of small curvilinear segments dy, and
dy, along the boundary C, of the current region. The curvi-
linear segments may be connected and grouped according to
the gvalues to reconstruct vessels and other objects of interest
in the image data.

A shape context is a feature descriptor that allows for
measuring shape similarity. For a subject boundary voxel x,,
the histogram of'the relative coordinates of the remaining n-1
voxels of the boundary C, is:

hy(k)y=#{=x,:(q-x)ebin(k)} 2)

wherein the boundary C, is approximated by n points. In other
words, shape context is provided by the histogram of the
relative coordinates of all the other control voxels around the
same object. The shape contexts for all boundary voxels of
both the current region and the shape prior may be calculated.

Referring back to FIG. 2, at 210, the segmentation unit 107
generates one or more fences around boundary voxels that
violate shape constraints. To generate the fences, boundary
voxels of the current region that violate shape constraints are
first identified. Next, fences are generated around such
boundary voxels to exclude neighboring voxels in the seg-
mentation refinement step 206.

Shape constraints are violated if the shape descriptor asso-
ciated with the subject voxel is substantially different from
the shape descriptor of a shape prior (i.e., difference is more
than a predetermined threshold value). To identify boundary
voxels that violate shape constraints, the local coordinate
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systems of the shape descriptors for the current region and the
shape prior may first be aligned. For example, the local coor-
dinate systems of two spheres S, corresponding to the Gauss
Maps of the current region and the shape prior may be
aligned.

Various methods may be used to define the local coordinate
system on each sphere S,. In some implementations, a first
axis of the local coordinate system is defined along the lon-
gitudinal axis of a cylindrical shape that approximates the
boundary of the current region or shape prior. A second axis
of the local coordinate system may be defined along a line
connecting the center of the base circle of the cylindrical
shape and the point x, while a third axis may be defined as
perpendicular to both the first and second axes. Alternatively,
the normal vector of the boundary at point x may be defined
as the first axis, while the tangent vector at point X may be
defined as the second axis. Since there may be many tangent
vectors, a tangent vector that minimizes the difference
between the Gauss Maps of the current region and the shape
prior may be selected to define the second axis. The third axis
may be defined as perpendicular to both the first and second
axes.

After aligning the local coordinate systems of the shape
descriptors associated with the current region and the shape
prior, the difference between the shape descriptors may be
calculated. In some implementations, the difference is calcu-
lated by binning the spheres S, into smaller areas separated by
longitudinal and latitudinal lines, similar to a terrestrial globe.
The difference between the shape descriptors may be calcu-
lated based on the difference between the bins associated with
the current object and the shape prior. If the difference
between the shape descriptors is more than a predetermined
threshold, the subject voxel is determined to violate shape
constraints.

Once the subject voxel is determined to violate shape con-
straints, a “fence” is generated around the subject voxel. A
“fence” generally refers to a set of pixels or voxels that are
within a predetermined shape (e.g., rectangle, ellipse, circle,
etc.) surrounding (e.g., centered at) a boundary voxel that
violates shape constraints. Pixels or voxels within the fences
are assigned special values to prevent the segmentation mask
from growing inside the fences at step 206. The fence is
advantageously useful in preventing or minimizing segmen-
tation leakage, which may not be avoided if the segmentation
excludes only voxels that violate shape constraints. To illus-
trate this point, suppose that a vessel near a bone is seg-
mented, and that both the vessel and bone have similar inten-
sity values. Even when most of the pixels representing the
bone are rejected, if there is a single pixel allowed into the
vessel segmentation mask, the segmentation mask may grow
into the bone, thereby giving rise to segmentation leakage or
bleeding artifacts. To prevent such leakage problems, one or
more fences are generated to exclude neighboring voxels (or
pixels) concordantly from the segmentation mask. In other
words, the current region cannot grow beyond the fenced
area.

For example, in the case of a blood vessel, it is generally
known to be a tubular structure with some bifurcating por-
tions. The shape prior may be predefined as a tubular shape to
constrain the segmentation. The GM or GLI of pixels at the
growing boundary should be concentrated in the direction of
the tube. If the GM or GLI is distributed far away from this
direction, it indicates there is likely a segmentation leakage.
Fences are built around boundary pixels P that violate shape
constraints (i.e., substantially different GM or GLI from the
shape prior) to prevent such leakage. Each fence may be
defined by, for example, a rectangular area of width and
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height of 3 pixels, centered at P, parallel to the tubular direc-
tion and perpendicular to the normal direction. Other geomet-
ric shapes, such as circle, oval or sphere, may also be used to
define each fence.

At 212, the segmentation unit 107 checks to see if the
terminating condition is met. The terminating condition may
be met if there are no more voxels or pixels that can be added
to the current region. If the terminating condition is not met,
steps 206-212 may be repeated to iteratively grow the current
region to generate the segmentation mask. If the terminating
condition is met, the method 200 continues at 214.

At 214, the segmentation unit 104 outputs the segmenta-
tion mask. The segmentation mask may be, for example,
presented at workstation 103 and/or stored for future
retrieval.

FIG. 4 illustrates an exemplary segmentation of a vertebral
artery with and without fences. More particularly, image 402
shows segmentation with fences and image 412 shows seg-
mentation without fences. Image 422 shows the fences 424
that were set up outside the segmentation mask 404 in image
402 to constrain the segmentation in accordance with the
present framework. As illustrated by image 402, the segmen-
tation mask 404 was constrained by the fences, resulting in no
leakage artifacts outside the vertebral artery. In contrast, no
fences were set up in image 412, and the segmentation mask
414 leaked outside the vertebral artery into the neighboring
bone region.

FIG. 5 illustrates an exemplary segmentation of a large
vessel (descending aorta) with and without fences. More par-
ticularly, image 502 shows segmentation with fences and
image 512 shows segmentation without fences. As illustrated
by image 502, the segmentation mask 504 was constrained by
the fences, resulting in no leakage artifacts outside the vessel.
In contrast, no fences were set up in image 512, and the
segmentation mask 514 leaked outside the vessel into the
neighboring vertebral region, as evidenced by artifact 516.

While the present invention has been described in detail
with reference to exemplary embodiments, those skilled in
the art will appreciate that various modifications and substi-
tutions can be made thereto without departing from the spirit
and scope of the invention as set forth in the appended claims.
For example, elements and/or features of different exemplary
embodiments may be combined with each other and/or sub-
stituted for each other within the scope of this disclosure and
appended claims.

What is claimed is:

1. A method of image segmentation performed by a com-

puter system, comprising:

(1) refining a current segmentation mask associated with an
object of interest and excluding, from the current seg-
mentation mask, any image element associated with a
previously generated fence;

(ii) calculating a first shape descriptor for a subset of image
elements of the current segmentation mask;

(iii) selecting one or more image elements of the current
segmentation mask that violate a shape constraint by
comparing the first shape descriptor to a second shape
descriptor of a shape prior;

(iv) generating one or more fences around the selected one
or more image elements; and

(v) repeating at least steps (i), (ii), (iii) and (iv) until a
terminating condition is met;

wherein the first shape descriptor is calculated based on the
object of interest and another object in the vicinity of the
object of interest in current patient image data.



US 9,082,193 B2

11

2. The method of claim 1 further comprising defining an
initial region and setting the current segmentation mask to the
initial region.

3. The method of claim 2 wherein refining the current
segmentation mask comprises performing region growing.

4. The method of claim 1 further comprising defining an
initial curve and setting the current segmentation mask to the
initial curve.

5. The method of claim 4 wherein refining the current
segmentation mask comprises performing curve evolution.

6. The method of claim 1 wherein calculating the first shape
descriptor for the subset of image elements of the current
segmentation mask comprises calculating a Gauss Map.

7. The method of claim 1 wherein calculating the first shape
descriptor for the subset of image elements of the current
segmentation mask comprises calculating a Gaussian Link-
ing Integrand.

8. The method of claim 1 wherein calculating the first shape
descriptor for the subset of image elements of the current
segmentation mask comprises calculating a shape context.

9. The method of claim 1 wherein the shape prior is based
on a geometric shape.

10. The method of claim 1 wherein generating the one or
more fences around the selected one or more image elements
comprises defining a geometric shape centered at one of the
selected one or more image elements.

11. The method of claim 1 further comprising calculating
the second shape descriptor based on the object of interest and
another object in the vicinity of the object of interest in prior
patient image dataset to calculate the shape prior.

12. A system for facilitating image segmentation, compris-
ing: a non-transitory memory device for storing computer
readable program code; and a processor in communication
with the memory device, the processor being operative with
the computer readable program code to:

(1) refine a current segmentation mask associated with an
object of interest and excluding, from the current seg-
mentation mask, any image element associated with a
previously generated fence;

(ii) select one or more image elements of the current seg-
mentation mask that violate a shape constraint by com-
paring a first shape descriptor of the one or more image
elements to a second shape descriptor of a shape prior;
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(ii1) generate one or more fences around the selected one or
more image elements; and

(iv) repeat at least steps (1), (i1) and (iii) until a terminating
condition is met;

wherein the first shape descriptor is calculated based on the
object of interest and another object in the vicinity of the
object of interest in current patient image data.

13. The system of claim 12 wherein the processor is opera-
tive with the computer readable program code to refine the
current segmentation mask by performing region growing.

14. The system of claim 12 wherein the processor is opera-
tive with the computer readable program code to refine the
current segmentation mask by performing curve evolution.

15. The system of claim 12 wherein the first and second
shape descriptors comprise Gauss Maps.

16. The system of claim 12 wherein the first and second
shape descriptors comprise Gaussian Linking Integrands.

17. The system of claim 12 wherein the first and second
shape descriptors comprise shape contexts.

18. A non-transitory computer readable medium embody-
ing a program of instructions executable by machine to per-
form steps for facilitating image segmentation, the steps com-
prising:

(1) refining a current segmentation mask associated with an
object of interest and excluding, from the current seg-
mentation mask, any image element associated with a
previously generated fence;

(ii) selecting one or more image elements of the current
segmentation mask that violate a shape constraint by
comparing a first shape descriptor of the one or more
image elements to a second shape descriptor of a shape
prior;

(iii) generating one or more fences around the selected one
or more image elements; and

(iv) repeating at least steps (i), (ii) and (iii) until a termi-
nating condition is met;

wherein the first shape descriptor is calculated based on the
object of interest and another object in the vicinity of the
object of interest in current patient image data.

19. The non-transitory computer readable medium of claim

18 wherein the first and second shape descriptors comprise a
Gauss Map, a Gaussian Linking Integrand or a shape context.
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